Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск

Подавление ионизации как частный случай матричных эффектов в жидкостной хроматографии-масс-спектрометрии (обобщающая статья)

Аннотация

Метод высокоэффективной жидкостной хроматографии-масс-спектрометрии (ВЭЖХ-МС) с ионизацией при атмосферном давлении является одним из наиболее селективных и чувствительных, при этом он, как и другие аналитические методы, подвержен матричным эффектам. Одним из наименее изученных и наиболее непредсказуемым проявлением матричных эффектов при ВЭЖХ-МС анализе является подавление ионизации аналита компонентами матрицы (ion suppression). Поскольку данное явление может оказывать значительное влияние на такие параметры метода, как предел обнаружения, предел определения, точность и воспроизводимость, очевидно, что оценка вклада данного вида матричных эффектов и его учет при количественном анализе необходимы в процессе разработки и валидации методик. В статье обсуждены возможные причины и механизмы возникновения подавления ионизации, приведена максимально сжатая информация об основных подходах к выявлению этого эффекта, путях его минимизации и способах учета при измерениях.

Об авторах

Е. Н. Чернова
Санкт-Петербургский научно-исследовательский центр экологической безопасности Российской академии наук
Россия


Я. В. Русских
Санкт-Петербургский научно-исследовательский центр экологической безопасности Российской академии наук
Россия


З. А. Жаковская
Санкт-Петербургский научно-исследовательский центр экологической безопасности Российской академии наук
Россия


Е. М. Лопушанская
Всероссийский Научно-исследовательский институт метрологии им. Д. И. Менделеева
Россия


Н. Р. Галль
Физико-технический институт им. А. Ф. Иоффе Российской академии наук; Институт аналитического приборостроения Российской академии наук
Россия


Список литературы

1. IUPAC Gold book. URL: http://www.goldbook.iupak.org/M03759.html (accessed 16.02.2016).

2. Buhrman D. L., Price P. I., Rudewicz P. J. Quantitation of SR 27417 in human plasma using electrospray liquid chromatography mass spectrometry: a study of ion suppression / J. Am. Soc. Mass. Spectrom. 1996. Vol. 7. P. 1099- 1105.

3. Tonidandel L., Seraglia R. Matrix effect, signal suppression and enhancement in LC-ESI-MS / Advances in LC-MS instrumentation (ed. A. Cappiello). -Amsterdam: Elsevier Publications, 2007. P. 193 - 210.

4. Gosetti F., Mazzucco E., Zampieri D., Gennaro M. C. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry / J. Chromatogr. A. 2010. Vol. 1217. N 25. P. 3929 -3937.

5. Dikunets M. A., Savel’eva N. B., Bolotov S. L., et al. Study of the Matrix Effect on the Determination of Nonconjugated Xenobiotics in Human Urine by High Performance Liquid Chromatography/Tandem Mass Spectrometry / J. Anal. Chem. 2010. Vol. 65. N 13. P. 1333 - 1340.

6. Trufelli H., Palma P., Famiglini G., Cappiello A. An overview of matrix effects in liquid chromatography - mass-spectrometry / Mass Spectrom. Rev. 2011. Vol. 30. P. 491 - 509.

7. Stahnke H., Reemtsma T., Alder L. Compensation of matrix effects by postcolumn infusion of a monitor substance in multiresidue analysis with LC-MS/MS / Anal. Chem. 2009. Vol. 81. N 6. P. 2185 - 2192.

8. Bonfiglio R., King R. C., Olah T. V., Merkle K. The effect sample preparation methods on the variability of the electro spray ionization response for model drug compounds / Rapid Commun Mass Spectrom. 1999. Vol. 13. N 12. P. 1175 - 1185.

9. Furey A., Moriarty M., Bane V., et al. Ion suppression: a critical review on causes, evaluation, prevention and applications / Talanta. 2013. Vol. 115. P. 104- 122.

10. Van Eeckhaut A., Lanckmans K., Sarre S., et al. Validation of bioana-lytical LC-MS/MS assays: Evaluation of matrix effects / J. Chromatogr. B. 2009. Vol. 877. N 23. P. 2198 - 2207.

11. Peters F. T., Drummer O. H., Musshoff F. Validation of new methods / Forensic Sci. Int. 2007. Vol. 165. N 2 - 3. P. 216 - 224.

12. Thompson M., Ellison S., Wood R. Harmonized guidelines for singlelaboratory validation of methods of analysis / IUPAC, Pure and Applied Chemistry. 2002. Vol. 74. P. 835 - 855.

13. U.S. Food and Drug Administration’s (FDA) Guidance for Industry on Bioanalytical Method Validation. URL: http://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf (accessed 15.12.2015).

14. Guidline on bioanalytical method validation of European Medicines Agency - Committee for Medicinal Products for Human Use. 2011. URL: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf (accessed 16.02.2016).

15. Yaroshenko D. V., Kartsova L. A. Matrix effect and methods for its elimination in bioanalytical methods using chromatography-mass spectrometry / J. Anal. Chem. 2014. Vol. 69. N 4. P. 311 -317.

16. RF State Standard GOST R 52379-2005. Nadlezhashchaya kliniche-skaya praktika (GCP) [Good Clinical Practice. Russian Federation National standard]. From 01.04.2006. URL: http://gostrf.com/norma-data/1/4293852/4293852873.pdf [in Russian].

17. ISO/IEC 17025:2005. General requirements for the competence of testing and calibration laboratories (IDT). Interstate standard. From 01.01.2012. URL: http://gostrf.com/normadata/1/4293801/ 4293801404.pdf [in Russian].

18. Antignac J. P., Wash F., Monteau H. D., et al. The ion suppression phenomenon in liquid chromatography-mass spectrometry and its consequences in the field of residue analysis / Anal. Chim. Acta. 2005. Vol. 529. P. 129- 136.

19. Eshraghi J., Chowdhury S. K. Factors affecting electrospray ionization of effluents containing trifluoroacetic acid for high-performance liquid chromatography/mass spectrometry / Anal. Chem. 1993. Vol. 65. P. 3528-3533.

20. Gustavsson S. A., Samskog J., Markides K. E., Langstrom B. Studies of signal suppression in liquid chromatography-electrospray ionization mass spectrometry using volatile ion-paring reagents / J. Chromatogr. A. 2001. Vol. 937. P. 41-44.

21. Mei H., Hsieh Y., Nardo C., et al. Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays: Application to drug discovery / Rapid Commun. Mass Spectrom. 2003. Vol. 17. N 1. P. 97 - 103.

22. Mallet C. R., Lu Z., Mazzeo J. R. A study of ion suppression effects in electrospray ionization from mobile phase additives and solid phase extracts / Rapid Commun. Mass Spectrom. 2004. Vol. 18. N 1. P. 49 - 58.

23. Schuhmacher J., Zimmer D., Tesche F., Pickard V. Matrix effects during analysis of plasma samples by electrospray and atmospheric pressure ionization mass spectrometry: practical approaches to their elimination / Rapid Commun. Mass Spectrom. 2003. Vol. 17. P. 1950 - 1957.

24. Wood M., Laloup M., Ramirez Fernandez M., et al. Quantitative analysis of multiple illicit drugs in preserved oral fluid by solid-phase extraction and liquid chromatography-tandem mass spectrometry / Forensic Sci Int. 2005. Vol. 150. P. 227 - 238.

25. Tong X. C. S., Wang J. Y., Zheng S., et al. Effect of signal interference from dosing excipients on pharmacokinetic screening of drug candidates by liquid chromatography/mass spectrometry / Anal Chem. 2002. Vol. 74. N 24. P. 6305 - 6313.

26. Shou W. Z., Weng N. D. Post-column infusion study of the dosing vehicle effect in the liquid chromatography/tandem mass spectrometry of discovery pharmacokinetic samples / Rapid Commun. Mass Spectrom. 2003. Vol. 17. N 6. P. 589 - 597.

27. Larger P. J., Breda M., Fraier D., et al. Ion-suppression effects in liquid chromatography-tandem mass spectrometry due to a formulation agent, a case study in drug discovery bioanalysis / J. Pharm. Biomed. 2005. Vol. 39. P. 206-216.

28. Weaver R., Riley R. J. Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400 / Rapid Commun. Mass Spectrom. 2006. Vol. 20. P. 2559 - 2564.

29. Xu X., Mei H., Wang S., et al. A study of common discovery dosing formulation components and their potential for causing time-dependent matrix effects in high-performance liquid chromatography tandem mass spectrometry assays / Rapid Commun. Mass Spectrom. 2005. Vol. 19. P. 2643 - 2650.

30. Souverain S., Rudaz S., Veuthey J. L. Matrix effectinLC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures / J. Chromatogr. A. 2004. Vol. 1058. P. 61 - 66.

31. Leverence R., Avery M. J., Kavetskaia O., et al. Signal suppression/enhancement in HPLC-ESI-MS/MS from concomitant medications / Biomed. Chromatogr. 2007. Vol. 21. P. 1143 - 1150.

32. Hanold K. A., Fischer S. M., Cormia P. H., et al. Atmospheric pressure photoionization. 1. General properties for LC/MS / Anal Chem. 2004. Vol. 76. N 10. P. 2842 - 2851.

33. Lebedev A. T. Mass-spektrometriya dlya analiza ob’’ektov okruzhayushchei sredy [Mass-spectrometry for the environmental analysis]. - Moscow: Tekhnosfera, 2013. - 632 p. [in Russian].

34. Cole R. B. Some tenets pertaining to electrospray ionization mass spectrometry / J. Mass Spectrom. 2000. Vol. 35. N 7. P. 763 - 772.

35. Kebarle P. A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry / J. Mass Spectrom. 2000. Vol. 35. P. 804-817.

36. Cech N. B., Enke C. G. Practical implications of some recent studies in electrospray ionization fundamentals / Mass Spectrom. Rev. 2001. Vol. 20. P. 362 - 387.

37. King R., Bonfiglio R., Fernandez-Metzler C., et al. Mechanistic investigation of ionization suppression in electrospray ionization / J. Am. Soc. Mass. Spectrom. 2000. Vol. 11. N 11. P. 942 - 950.

38. Cappiello A., Famiglini G., Palma P., et al. Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry / Anal. Chem. 2008. Vol. 80. P. 9343 -9348.

39. Enke C. G. A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes / Anal. Chem. 1997. Vol. 69. P. 4885 -4893.

40. Cech N. B., Enke C. G. Relating electrospray ionization response to nonpolar character of small peptides / Anal. Chem. 2000. Vol. 72. P. 2717-2723.

41. Apffel A., Fisher S., Goldberg G., et al. Enhanced sensitivity for peptide mapping with electrospray liquid chromatography-mass spectrometry in the present of signal suppression due to trifluoroacetic acid-containing mobile phases / J. Chromatogr. A. 1995. Vol. 712. P. 177 - 190.

42. Zhou S., Cook K. D. A mechanistic study of electrospray mass spectrometry: charge gradients within electrospray droplets and their influence on ion response / J. Am. Soc. Mass Spectrom. 2001. Vol. 12. P. 206 -214.

43. Holcapek M., Volna K., Jandera P., et al. Effects of ion-pairing reagents on the electrospray signal suppression of sulphonated dyes and intermediates / J. Mass Spectrom. 2004. Vol. 39. P. 43 - 50.

44. Ikonomu M. G., Blades A. T., Kebarle P. Investigations of the electrospray interface for liquid chromatography/mass spectrometry / Anal. Chem. 1990. Vol. 62. P. 957 - 967.

45. Bruins C. H. P., Jeronimus-Stratingh K., Ensing W. D., Jong G. J. D. On-line coupling of solid-phase extraction with mass spectrometry for the analysis of biological samples: I. Determination of clenbuterol in urine / J. Chromatogr. A. 1999. Vol. 863. N 1. P. 115 - 122.

46. Sangster T., Spence M., Sinclair P., et al. Unexpected observation of ion suppression in a liquid chromatography/atmospheric chemical ionization mass spectrometric bioanalytical method / Rapid Commun. Mass Spectrom. 2004. Vol. 18. P. 1361 - 1364.

47. Jessome L. L., Volmer D. A. Ion suppression: a major concern in mass-spectrometry / LC-GG North America. 2006. Vol. 24. N 5. P. 498-510.

48. Liang H. R., Foltz R. L., Meng M., Bennet P. Ionization enhancement in atmospheric pressure ionization and suppression in electrospray ionization between target drugs and stable-isotope-labeled internal standards in quantitative liquid chromatography/tandem mass spectrometry / Rapid Commun. Mass Spectrom. 2003. Vol. 17. P. 2815 - 2821.

49. Naidong W. Bioanalytical liquid chromatography tandem mass spectrometry methods on underivatized silica columns with aqueous/organic mobile phases / J. Chromatogr. B. 2003. Vol. 796. N 2. P. 209 - 224.

50. Kloepfer A., Quintana J., Reemtsma T. Operational options to reduce matrix effects in liquid chromatography-electrospray ionization-mass spectrometry analysis of aqueous environmental samples / J. Chromatogr. A. 2005. Vol. 1067. P. 153 - 160.

51. Barnes K. A., Fussel R. J., Startin J. R., et al. Determinations of the pesticides diflubenzuron and clofentezine in plums, strawberries and blackcurrant-based fruit drinks by high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry / Rapid Commun. Mass Spectrom. 1995. Vol. 9. P. 1441 - 1445.

52. Matuszewsky B. K., Constanzer M. L., Chavez-Eng C. M. Matrix effect in quantitative LC/MS/MS analyses of biological fluids: A method for determination of finasteride in human plasma at picogram per milliliter concentrations / Anal Chem. 1998. Vol. 70. P. 882 - 889.

53. Matuszewsky B. K., Constanzer M. L., Chavez-Eng C. M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS / Anal. Chem. 2003. Vol. 75. N 13. Р. 3019 - 3030.

54. Vanderford B. J., Pearson R. A., Rexing D. J., Snyder S. A. Analysis of endocrine disruptors, pharmaceutical and personal care products in water using liquid chromatography/tandem mass spectrometry / Anal. Chem. 2003. Vol. 75. N 22. P. 6265 - 6274.

55. Ching C., Zhang Z. P., Karnes H. T. A study of matrix effects on an LC/MS/MS assay for olanzapine and desmethyl olanzapine / J. Pharm. Biomed. Anal. 2004. Vol. 35. N 5. P. 1149 - 1167.

56. Cappiello A., Famiglini G., Palma P., et al. Advanced liquid chromatography-mass spectrometry interface based on electron ionization / Anal. Chem. 2007. Vol. 79. N 14. P. 5364 - 5372.

57. Cappiello A., Famiglini G., Palma P., et al. Application of nano-FIA-direct-EI-MS to determine diethylene glycol in produced formation water discharges and seawater samples / Chemosphere. 2007. Vol. 69. N4. P. 554-560.

58. Famiglini G., Palma P., Pierini E., Trufelli H., Cappiello A. Organochlorines pesticides by LC-MS / Anal. Chem. 2008. Vol. 80. N 9. P. 3445 - 3449.

59. Famiglini G., Palma P., Termopoli V., et al. Single-step LC/MS method for the simultaneous determination of GC-amenable organochlorine and LC-amenable phenoxy acidic pesticides / Anal. Chem. 2009. Vol. 81. N17. P. 7373-7378.

60. Marin J. M., Gracia-Lor E., Sancho J. V., et al. Application of ultra-high-pressure liquid chromatography-tandem mass spectrometry to the determination of multi-class pesticides in environmental and wastewater samples: Study of matrix effects / J. Chromatogr. A. 2009. Vol. 1216. P. 1410- 1420.

61. Callahan J. H., Shefcheck K. J., Williams T. L., Musser S. M. Detection, confirmation, and quantification of staphylococcal enterotoxin B in food matrix using liquid chromatography mass spectrometry / Anal. Chem. 2006. Vol. 78. P. 1789 - 1800.

62. Annesley T. M. Ion suppression in mass spectrometry / Clin. Chem. 2003. Vol. 49. P. 1041 - 1044.

63. Freitas L. G., Gotz C. W., Ruff M., et al. Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography-tandem mass spectrometry / J. Chromatogr. A. 2004. Vol. 1028. P. 277 - 286.

64. Ismaiel O. A., Halquist M. S., Elmamly M. Y., et al. Monitoring phospholipids for assessment of ion enhancement and ion suppression in ESI and APCI LC/MS/MS for chlorpheniramine in human plasma and the importance of multiple source matrix effect evaluations / J. Chromatogr. B. 2008. Vol. 875. P. 333 - 343.

65. Zhao Z., Metcalfe C. D. Characterizing and compensating for matrix effects using atmospheric pressure chemical ionization liquid-chromatography-tandem mass spectrometry: Analysis of neutral pharmaceuticals in municipal wastewater / Anal. Chem. 2008. Vol. 80. N 6. P. 2010-2017.

66. Xu R. N., Fan L., Rieser M. J., El-Shourbagy T. A. Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS / J. Pharm. Biomed. Anal. 2007. Vol. 44. P. 342 - 355.

67. Hao C., Zhao X., Tabe S., Yang P. Optimization of a multiresidual method for the determination of waterborne emerging organic pollutants using solid-phase extraction and liquid chromatography/tandem mass spectrometry and isotope dilution mass spectrometry / Environ. Sci. Technol. 2008. Vol. 42. P. 4068 - 4075.

68. Stokvis E., Rosing H., Beijnen J. H. Stable isotopically labeled internal standard in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? / Rapid Commun. Mass Spectrom. 2005. Vol. 19. P. 401 -407.

69. Wang S., Cyronak M., Yang E. Does a stable isotopically labeled internal standard always correct analyte response? A matrix effect study on a LC/MS/MS method for the determination of carvedilol enantiomers in human plasma / J. Pharm. Biomed. Anal. 2007. Vol. 43. P. 701 - 707.

70. Lindegardh N., Annerberg A., White N. J., Daya N. P. J. Development and validation of a liquid chromatographic-tandem mass spectro-metric method for determination of piperaquine in plasma. Stable isotope labeled internal standard does not always compensate for matrix effects / J. Chromatogr. B. 2008. Vol. 862. P. 227 - 236.

71. Jemal M. High throughput quantitative bioanalysis by LC-MS/MS / Biomed. Chromatogr. 2000. Vol. 14. P. 422 - 429.

72. Kang J. Hick L. A., Price W. E. Using calibration approaches to compensate for remaining matrix effects in quantitative liquid chromatography/electrospray ionization multistage mass spectrometric analysis of phytoestrogens in aqueous environmental samples / Rapid Commun. Mass Spectrom. 2007. Vol. 21. P. 4065 - 4072.

73. Alder L., Lüderitz S., Lindtner K., Stan H.-J. The ECHO technique - The more effective way of data evaluation in liquid chromatography-tandem mass spectrometry analysis / J. Chromatogr. A. 2004. Vol. 1058. P. 67-79.

74. Zrostlfkova J., Hajslova J., Poustka J., Begany P. Alternative calibration approaches to compensate the effect of co-extracted matrix components in liquid chromatography-electrospray ionisation tandem mass spectrometry analysis of pesticide residues in plant materials / J. Chromatogr. A. 2002. Vol. 973. P. 13 - 26.

75. Sychov K. S. Podgotovka proby v gazovoi i zhidkostnoi khromatografii [Sample preparation in gas and liguid chromatography]. - Moscow: KOKORO, 2012. - 160 p. [in Russian].

76. Polson C., Sarkar P., Incledon B., et al. Optimization of proteinpreci-pitation based upon effectiveness of protein removal and ionization effect in LCMS/MS / J. Chromatogr. B. 2003. Vol. 785. P. 263 - 275.

77. Avery M. J. Quantitative characterization of differential ion suppression on liquid chromatography/atmospheric pressure ionization mass spectrometric bioanalytical methods / Rapid Commun. Mass Spectrom. 2003. Vol. 17. P. 197-201.

78. Chang M. Ispol’zovanie produktov Agilent Bond Elut Plexa dlya snizheniya ionnoi supressii i uluchsheniya chuvstvitel’nosti zhidkostnoi khromato-mass-spektrometrii (ZhKh-MS). Farmatsevticheskie sredstva i dzheneriki s maloi molekulyarnoi massoi. Metodicheskie rekomendatsii [Application of Agilent Bond Elut Plexa products for decreasing of ion suppression and sensivity improvment in liquid chromatography-mass-spectrometry (LC/MS). Pharmaceuticals and generics with low molecular mass]. URL: http://www.agilent.com/cs/library/ applications/5990-8388RU.pdf (07.07.2016) [in Russian].

79. John M., Rödel M. (eds.). Solid Phase Extraction Application Guide. Macherey-Nagel. URL: ftp://ftp. mn-net.com/english/Flyer_Catalogs/ Chromatography/SPE/SPE_Applis.pdf (16.02.2106).

80. Guide to Solid Phase Extraction. Supelco. Bulletin 910. URL: http:// www.sigmaaldrich.com/Graphics/Supelco/objects/4600/4538.pdf(assessed 16.02.2106).

81. Beginner’s Guide to SPE [Solid-Phase Extraction]. Waters. 2016. URL: https://waters.com/waters/en_US/Beginner_%27s-Guide-to-SPE-_%5BSolid-Phase-Extraction_%5D/nav.htm?cid=134721476 (assessed 16.02.2106).

82. Zwir-Ferenc A., Biziuk M. Solid Phase Extraction Technique - Trends, Opportunities and Applications / Polish J. Environ. Stud. 2006. Vol. 15. N5. P. 677-690.

83. Van Hout M. W. J., Hofland C. M., Niederländer H. A. G., de Jong G. J. On-line coupling for solid-phase extraction with mass spectrometry for the analysis of biological samples. II. Determination of clenbuterol in urine using multiple-stage mass spectrometry in an ion-trap mass spectrometer / Rapid Commun. Mass Spectrom. 2000. Vol. 14. P. 2103 -2111.

84. Koeber R., Fleischer C., Lanza F., et al. Evaluation of a multidimensional solid-phase extraction platform for highly selective on-line cleanup and high-throughput LC-MS analysis of triazines in river water samples using molecular imprinted polymers / Anal Chem. 2001. Vol. 73. P. 2437-2444.

85. Tachon R., Pichon V., Barbe Le Borgne M., Minet J. J. Comparison of solid-phase extraction sorbents for sample clean-up in the analysis of organic explosives / J. Chromatogr A. 2008. Vol. 1185. P. 1 - 8.

86. Benijts T., Dams R., Lambert W., De Leenher A. Countering matrix effects in environmental liquid chromatography-electrospray ionization tandem mass spectrometry water analysis for endocrine disrupting chemicals / J. Chromatogr. A. 2004. Vol. 1029. P. 153 - 159.

87. Lindsey M. E., Meyer M., Thurman E. M. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry / Anal. Chem. 2001. Vol. 73. N 19. P. 4640 - 4646.

88. O’Connor S., Locke J., Aga D. S. Addressing the challenges of tetracycline analysis in soil: Extraction, clean-up, and matrix effects in LC-MS / J. Environ. Monit. 2007. Vol. 9. P. 1254 - 1262.

89. Hogenboom A. C., Hofman D. A., Niessen W. M. A., Brinkman U. A. Th. On-line dual-precolumn-based trace enrichment for the determination of polar and acidic microcontaminants in river water by liquid chromatography with diode-array UV and tandem mass spectrometric detection / J. Chromatogr. A. 2000. Vol. 885. P. 377 - 388.

90. Niessen W. M. A., Manini P., Andreoli R. Matrix effects inquantitative pesticide analysis using liquid chromatography-mass spectrometry / Mass Spectrom. Rev. 2006. Vol. 25. P. 881 - 899.

91. Van De Steene J. C., Mortier K. A., Lambert W. E. Tackling matrix effects during development of a liquid chromatographic-electrospray ionisation tandem mass spectrometric analysis of nine basic pharmaceu ticals in aqueous environmental samples / J. Chromatogr. A. 2006. Vol. 1123. P. 71-81.

92. Blackwell P. A., Holten L., Holten Lützhoft H.-C., et al. Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection / Talanta. 2004. Vol. 64. P. 1058 - 1064.

93. Kruve A., Künnapas A., Herodes K., Leito I. Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry / J. Chromatogr. A. 2008. Vol. 1187. P. 58 - 66.

94. Chambers E., Wagrowsky-Diehl D. M., Lu Z., Mazzeo J. R. Systematic and comprehensive strategy for reducing matrix.effects in LC/MS/MS analyses / J. Chromatogr. B. 2007. Vol. 852. P. 22 - 34.

95. Hopfgartner G., Bourgogne E. Quantitative high-throughput analysis of drugs in biological matrices by mass spectrometry / Mass Spectrom. Rev. 2003. Vol. 22. P. 195 - 214.

96. Stoob K., Singer H. P., Goetz C. W., et al. Fully automated online solid phase extraction coupled directly to liquid chromatography-tandem mass spectrometry: Quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters / J. Chromatogr. A. 2005. Vol. 1097. P. 138 - 147.

97. Kuster M., Lopez de Alda M., Barcelo D. Liquid chromatography-tandem mass spectrometric analysis and regulatory issues of polar pesticides in natural and treated waters / J. Chromatogr. A. 2009. Vol. 1216. P. 520 - 529.

98. Dai C. M., Geissen S. U., Zhang Y. L., et al. Selective Removal of Diclofenac from Contaminated Water Using Molecularly Imprinted Polymer Microspheres / Environ. Pollut. 2011. Vol. 159. N6. P. 1660-1666.

99. Meng Z., Chen W., Mulchandani A. Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers / Environ. Sci. Technol. 2005. Vol. 39. N 22. P. 8958 - 8962.

100. Byun H. S., Youn Y. N., Yun Y. H., Yoon S. D. Selective separation of aspirin using molecularly imprinted polymers / Sep. Purif. Technol. 2010. Vol. 74. P. 144- 153.

101. Gendrikson O. D., Zherdiaev A. V., Dzantiev B. B. Molekulyarno imprintirovannye polimery i ikh primenenie v biokhimicheskom analize [Molecular imprinted polymers and their application in biochemical analysis] /Usp. Biol. Khimii. 2006. Vol. 46. P. 149- 192 [in Russian].

102. Pichon V. Selective sample treatment using molecularly imprinted polymers / J. Chromatogr. A. 2007. Vol. 1152. P. 41 - 53.

103. Zorita S., Boydb B., Jönssonb S., et al. Selective determination of acidic pharmaceuticals in wastewater using molecularly imprinted solid-phase extraction / Anal. Chim. Acta. 2008. Vol. 626. P. 147 - 154.

104. Sun Z., Schüssler W., Sengl M., et al. Selective trace analysis of diclofenac in surface and wastewater samples using solid phase extraction with a new molecularly imprinted polymer / Anal. Chim. Acta. 2008. Vol. 620. P. 73- - 81.

105. Mohamed R., Richoz-Payot J., Gremaud E., at al. Advantages of molecularly imprinted polymers LC-ESI-MS/MS for the selective extraction and quantification of chloramphenicol in milkbased matrixes. Comparison with a classical sample preparation / Anal. Chem. 2007. Vol. 79. N 24. P. 9557 - 9565.

106. Barker S. A. Matrix solid phase dispersion (MSPD) / J. Biochem. Biophys. Methods. 2007. Vol. 70. P. 151 - 162.

107. Kristenson E. M., Ramos L., Brinkman U. A. Th. Recent advances in matrix solid-phase dispersion / Trends Anal. Chem. 2006. Vol. 25. N2. P. 96-111.

108. Bogialli S., Curini R., Di Corcia A., et al. Simple and rapid assay for analyzing residues of carbamate insecticides in bovine milk: Hot water extraction followed by liquid chromatography-mass spectrometry / J. Chromatogr. A. 2004. Vol. 1054. P. 351 - 357.

109. Taylor P. J. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry / Clin. Biochem. 2005. Vol. 38. N 4. Р. 328 - 334.

110. Law B., Temesi D. Factors to consider in the development of generic bioanalytical high-performance liquid chromatographic-mass spectrometric methods to support drug discovery / J. Chromatogr. B. 2000. Vol. 748. P. 21-30.

111. Choi B. K., Hercules D. M., Gusev A. I. Effect of liquid chromatography separation of complex matrices on liquid chromatography-tandem mass spectrometry signal suppression / J. Chromatogr. A. 2001. Vol. 907. P. 337 - 342.

112. Giorgianni F., Cappiello A., Beranova-Giorgianni S., et al. LCMS/MS analysis of peptides with methanol as organic modifier: improved limits of detection / Anal. Chem. 2004. Vol. 76. N 23. P. 7028 -7038.

113. Quintana J. B., Reemtsma T. Sensitive determination of acidic drugs and triclosan in surface and wastewater by ion-pair reverse-phase liquid chromatography/tandem mass spectrometry / Rapid Commun. Mass Spectrom. 2004. Vol. 18. P. 765 - 774.

114. Dolan J. A Guide to HPLC and LC-MC Buffers Selection. ACE. URL: http://www.hplc.eu/Downloads/ACE_Guide_BufferSelection.pdf (16.02.2016).

115. Cappiello A., Famiglini G., Rossi L., Magnani M. Buffers in LC-MS / Anal. Chem. 1997. Vol. 69. P. 5136 - 5141.

116. Mannur V. S., Patel D., Mastiholimath V. S., Shah G. Selection of buffers in LC-MS: an overview / Int. J. Pharm. Sci. Rev. Res. 2011. Vol. 6. N 1. P. 34 - 37. URL: http://globalresearchonline.net/journal-contents/volume6issue1/Article-008.pdf (16.02.2016).

117. Ji H. Y., Park E., Lee K., Lee H. Quantification of doxazosin in human plasma using hydrophilic interaction liquid chromatography with tandem mass spectrometry / J. Sep. Sci. 2008. Vol. 31. P. 1628 -1633.

118. Schmidt A., Karas M., Dülcks T. Effect of different solution flow rates on analyte ion signals in nano-ESI MS or: When does ESI turn into nano-ESI / J. Am. Soc. Mass Spectrom. 2003. Vol. 14. P. 492 - 500.

119. Gangl E. T., Annan M., Spooner N., Vouros P. Reduction of signal suppression effects in ESI-MS using a nanosplitting device / Anal. Chem. 2001. Vol. 73. N 23. P. 5635 - 5644.

120. Dijkman E., Mooibroek D., Hoogerbrugge R., et al. Study of matrix effects on the direct trace analysis of acidic pesticides in water using various liquid chromatographic modes coupled to tandem mass spectrometric detection / J. Chromatogr. A. 2001. Vol. 926. P. 113 - 125.

121. Hernandez F., Sancho J. V., Pozo O. J. An estimation of the exposure to organophosphorus pesticides through the simultaneous determination of their main metabolites in urine by liquid chromatography-tandem mass spectrometry / J. Chromatogr. B. 2004. Vol. 808. P. 229 - 239.

122. Rogatsky E., Balent B., Goswami G., et al. Sensitive quantitative analysis of C-peptide in human plasma by 2-dimensional liquid chromatography-mass spectrometry isotope-dilution assay / Clin. Chem. 2006. Vol. 52. P. 872 - 879.

123. Pascoe R., Foley J. P., Gusev A. I. Reduction in matrix-related signal suppression effects in electrospray ionization mass spectrometry using on-line two-dimensional liquid chromatography / Anal. Chem. 2001. Vol. 73. N24. P. 6014-6023.

124. Deng Y., Zhang H., Wu J. T., Olah T. V. Tandem mass spectrometry with online high-flow reversed-phase extraction and normal-phase chromatography on silica columns with aqueous-organic mobile phase for quantitation of polar compounds in biological fluids / Rapid Commun. Mass Spectrom. 2005. Vol. 19. P. 2929 - 2934.


Рецензия

Для цитирования:


Чернова Е.Н., Русских Я.В., Жаковская З.А., Лопушанская Е.М., Галль Н.Р. Подавление ионизации как частный случай матричных эффектов в жидкостной хроматографии-масс-спектрометрии (обобщающая статья). Заводская лаборатория. Диагностика материалов. 2016;82(10):5-16.

For citation:


Chernova E.N., Russkikh Ya.V., Zhakovskaya Z.A., Lopushanskaya E.M., Gall’ N.R. Suppression of Ionization as a Particular Case of Matrix Effects in Liquid Chromatography-Mass Spectrometry (generalizing article). Industrial laboratory. Diagnostics of materials. 2016;82(10):5-16. (In Russ.)

Просмотров: 670


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)