Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Physico-mechanical characteristics and multiscale stochastic modeling of cement mortar reinforced with oil palm mesocarp fibers

https://doi.org/10.26896/1028-6861-2022-88-5-62-70

Аннотация

Over the years, housing has always been one of the basic human needs. Stones, clay, wood and cement are common construction materials. Currently, cement structures are highly solicited both in our country and all over the world. However, cement structures suffer from stress-induced cracks attributed to overloading. The study was carried out to find out the possibility of minimizing the crack formation and increasing the stability of cement structures to fracture. The goal of the study is to characterize the physical and mechanical properties of the cement mortar reinforced with oil palm mesocarp fibers (OPMF) to increase the crack resistance of the structures built with cement mortar, as well as to simulate nucleation and growth of cracks up to the fracture. Composition of the prepared samples differed in the content of OPMF: 0.25, 0.5, 0.75, 1, 1.25, and 1.5 of sand weight. Analysis of the physical and mechanical characteristics of the samples carried out after 7, 28 and 45 days revealed that the rate of water absorption increases in proportion to the increase in fiber content and ranges from 2.4 to 11.6. The three-point bending test was used to determine the flexural strength and Young’s modulus (YM) upon bending. The flexural strength and YM increase as the fiber content of the sample increases from 0 to 0.25 and then decrease. The maximum values of the flexural strength (5.475_MPa) and YM (283.633_MPa) in bending were obtained after 45 days on a sample containing 0.25_% fibers. The compression test was used to determine the compressive strength and YM under compression. The compressive strength and YM decrease with increasing fiber content in the samples. The maximum values of the compressive strength (23.18_MPa) and YM (310.044_MPa) were obtained for the sample containing 0 of fibers. Analysis of the destruction of organic fiber cement samples revealed that the crack propagation occurs by the mechanism of coalescence of micropores. Stochastic modeling carried out for different fiber content showed that the crack growth rate also increases in proportion to the increase in the fiber content. Thus, the main cause of fracture in compressive and bending tests is the viscous growth of the pores and ductile-brittle crack growth through the cement grains.

Об авторах

М. S. Bisong
College of Technology, University of Buea, Cameroon; Ammosov’s North-Eastern Federal University
Камерун

Mbelle Samuel Bisong

ENSET Douala

58, Belinskogo ul., Yakutsk, 677000, Russia



V. V. Lepov
Larionov’s Institute of Physical-Technical Problems of the North, SB RAS; Academy of Science of Republic of Sakha (Yakutia)
Россия

Valeriy V. Lepov

1, Oktyabrskaya ul., 677007, Yakutsk

33, Lenina prosp., Yakutsk, 677007



T. Landrine
ENSET Kumba
Камерун

Tiogo Landrine

 



Список литературы

1. Tay L. T., Lee Y. Y., Lee Y. H., Kueh A. B. H. Compressive and Flexural Strengths of Mortar with Silica Aerogel Powder. ICCOEE2020. ICCOEE 2021 / Mohammed B. S., Shafiq N., Rahman M. Kutty S., Mohamad H., Balogun A. L., Eds. // Lect. Notes Civil Eng. 2021. Vol. 132. P. 493 – 500. Springer, Singapore. DOI:10.1007/978-981-33-6311-3_57

2. Ghosha P., Mandala S., Chattopadhyayb B. D., Palc S. Use of microorganism to improve the strength of cement mortar / Cement Concrete Res. 2005. Vol. 35(10). P. 1980 – 1983.

3. Filho R. D. T. E., Scriveneer K., George L., Ghavami K. Durability of alkali-sensitive sisal and coconut fibres in cement / Cement Concrete Composites. 2000. Vol. 22(2). P. 127 – 143.

4. Banfill P. F. G., Starrs G., Derruau G., McCarter W. J., Chrisp T. M. Rheology of low carbon fibre content reinforced cement mortar / Cement Concrete Composites. 2006. Vol. 28(9). P. 773 – 780.

5. Savastano H., Agopyan V., Nolasco A. M., Pimentel E. L. Plant fibre reinforced cement components for roofing / Constr. Build. Mater. 2018. Vol. 13(8). P. 433 – 438.

6. Chitte C. J., Sonawane Y. N. Study on Causes and Prevention of Cracks in Building / Int. J. Res. Appl. Sci. Eng. Technol. 2018. Vol. 6(III). P. 453 – 461.

7. Kunal K., Killemsetty N. Study on control of cracks in a Structure through Visual Identification & Inspection / IOSR J. Mech. Civil Eng. 2014. Vol. 11(5). P. 64 – 72.

8. Effects of vegetable fibres on the physico-mechanical properties of concrete. Magister thesis. — Mohamed-Seddik Ben Yahia-Jijel’s University. Argeria, 2019. — 100 p. [in French].

9. Juarez C., Miguel G. F. S., Valdez P. Microstructural characterization of natural fibers for composite materials of cement based / Can. J. Civil Eng. 2009. Vol. 36(3). P. 449 – 462 [in French]. DOI:10.1139/L09-009

10. Bopda Fokam C., Toumi E., Kenmeugne B., et al. Experimental study of the addition of oil palm mesocarp fiber on the physical and mechanical properties of fiber cement mortar composites / SN Appl. Sci. 2021. Vol. 3. P. 85. DOI:10.1007/s42452-020-04037-7

11. Huisken Mejouyo P. W., Harzallah O., Sikame Tagne N. R., Ndapeu D., Tchemou G., Drean J. Y., and Njeugna E. Physical and Mechanical Characterization of Several Varieties of Oil Palm Mesocarp Fibers Using Different Cross-Sectional Assumptions / J. Nat. Fibers. 2019. Vol. 18(2). P. 175 – 191.

12. Nyanjou R. N. Modernisation and Innovation of Palm Oil Extraction Process: The Palm Nut, Its By-products and Its Properties / IAALD AFITA WCCA2008 World Conference on Agricultural Information and IT, 2008. P. 1177 – 1183.

13. Schulker B. A., Jackson B. E., and Fonteno W. C. A practical method for determining substrate capillary water sorption / Acta Hortic. Proc. II International Symposium on Growing Media, Soilless Cultivation, and Compost Utilization in Hort // B. Vandecasteele and J. Viaene. Eds. 2021. P. 327 – 334. DOI:10.17660/ActaHortic.2021.1317.38

14. Guazzato M., Quach L., Albakry M., Swain M. V. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic / J. Dentistry. 2005. Vol. 33(1). P. 9 – 18.

15. Vu C., Plé O., Weiss J., Amitrano D. Revisiting the concept of characteristic compressive strength of concrete. Constr. Build. Mater. 2020. Vol. 263(10). 120126. DOI:10.1016/j.conbuildmat.2020.120126

16. Shah R. A., Pitroda J. Effect of Water Absorption and Sorptivity on Durability of Pozzocrete Mortar / Int. J. Emerg. Sci. Eng. 2013. Vol. 1(5). P. 73 – 77.

17. Ozerkan N. G., Ahsan B., Mansour S., Iyengar S. R. Mechanical performance and durability of treated palm fiber reinforced mortars / Int. J. Sustainable Built Environm. 2013. Vol. 2(2). P. 131 – 142.

18. Pereir M. V., Fujiyama R. B., Darwish F. C. On the Strengthening of Cement Mortar by Natural Fibers / Mat. Res. 2015.18(1). DOI:10.1590/1516-1439.305314

19. Lou C., Xu J., Wang T., et al. Microstructure and pore structure of polymer-cement composite joint sealants / Sci. Rep. 2021. Vol. 11. P. 1427. DOI:10.1038/s41598-021-81088-9

20. Tikhonova I., Guseva T., Potapova E. Cement production in Russia: best available techniques and opportunities for using alternative fuels / 19th International Multidisciplinary Scientific Geoconference SGEM 2019. Conference Proceedings. Ecology and Environmental Protection. — Sophia, 2019. P. 71 – 80.

21. Nizina T. A., Balukov A. S. Experimental-statistical models of properties of modified fiber-reinforced fine-grained concretes / Mag. Civil Eng. 2016. Vol. 2. P. 13 – 25. DOI:10.5862/MCE.62.2 [in Russian].

22. Ivanov V. V., Egorov P. V., Pimonov A. G. Statistical theory of emission processes in stressed structurally heterogeneous rocks and problem of prediction of dynamic phenomena / FTPRPY. 1990. Issue 187/34. P. 32 – 35 [in Russian].

23. Chernikova T. M., Ivanov V. V., Mikhailova E. A. On the fracture kinetics of materials under tension / Vestn. Kuzbass. Gos. Tekhn. Univ. 2005. Vol. 46(2). P. 75 – 77 [in Russian].

24. Botvina L. R. and Soldatenkov A. P. On the Concentration Criterion of Fracture / Metallofiz. Nov. Tekhnol. 2017. Vol. 39(4). P. 477 – 490. DOI:10.15407/mfint.39.04.0477

25. Lepov V. V., Grigorev A. S., Achikasova V. S., Lepova K. Ya. Some aspects of structural modeling of damage accumulation and fracture processes in metal structures at low temperature / Model. Simulation Eng. 2016. Vol. 2016. P. 1 – 6. DOI:10.1155/2016/7178028

26. Lepov V., Grigoriev A., Bisong M., Achikasova V., Lepova K., Ivanova A., Balakleiskii N., Loginov B., Loginov A. Microstructure Analyses and Multiscale Stochastic Modeling of Steel Structures Operated in Extreme Environment / Proc. Struct. Integrity. 2018. Vol. 13. P. 1201 – 1208. DOI:10.1016/j.prostr.2018.12.248


Рецензия

Для цитирования:


Bisong М.S., Lepov V.V., Landrine T. Physico-mechanical characteristics and multiscale stochastic modeling of cement mortar reinforced with oil palm mesocarp fibers. Заводская лаборатория. Диагностика материалов. 2022;88(5):62-70. https://doi.org/10.26896/1028-6861-2022-88-5-62-70

For citation:


Bisong M.S., Lepov V.V., Landrine T. Physico-mechanical characteristics and multiscale stochastic modeling of cement mortar reinforced with oil palm mesocarp fibers. Industrial laboratory. Diagnostics of materials. 2022;88(5):62-70. https://doi.org/10.26896/1028-6861-2022-88-5-62-70

Просмотров: 279


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)