Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Correlations between the elemental composition of grapes, soils of the viticultural area and wine

https://doi.org/10.26896/1028-6861-2021-87-11-11-18

Abstract

Study of the elemental composition of the soil-grape-wine chain and correlation relationships between the chain links is presented. The objects of the study were grapes of the Muscat, Cabernet and Merlot varieties, wine samples produced from them and soils of the viticultural areas. Concentrations of Li, Mg, Al, K, Ca, V, Mn, Fe, Ni, Co, Cu, Zn, Rb, Cd, Pb, Ba, Na, Ti and Sr in soils, grapes and wines were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Relationships between the elemental composition of the objects under study were assessed by statistical modelling using the STATISTICA software. The character of metal distribution in the soil-grape chain was studied for three forms of the element extraction from soils. We determined their gross content, the content of acid-soluble and mobile forms. The degree of absorption of mobile forms of metals by grapes was estimated using «biological absorption coefficient»., Values of the biological absorption coefficient (BAC) of different metals depend on the grape variety. High BAC values are observed for Rb, Ti, Mg, Zn, Cu, Na, Fe, Al, and Sr in Merlot grapes; K, Pbm and Ni in Muscat; and for V and Mn in Cabernet. The lowest BAC values were observed for Co, Ba, and Ca in all grape varieties under study. Each grape variety formed its own individual elemental image due to the different nature of absorption of the studied metals. The transfer of metals from grape to wine for all considered varieties was accompanied by a decrease in the concentrations of Mg, Al, K, Ca, Mn, Ni, Cu, Zn, Rb, Ba, Ti, and Sr and by an increase in the content of V, Fe, Co, Pb, and Na. Discriminant analysis revealed the metals with the highest identification properties, considering their form present in the soil. The results obtained can be used when setting markers determining the varietal and regional origin of wines.

About the Authors

Z. A. Temerdashev
Kuban State University
Russian Federation

Zaual A. Temerdashev - Faculty of Chemistry and High Technologies

149, Stavropol’skaya ul., Krasnodar, 350040



A. G. Abakumov
Kuban State University
Russian Federation

Aleksey G. Abakumov - Faculty of Chemistry and High Technologies

149, Stavropol’skaya ul., Krasnodar, 350040



A. A. Khalafyan
Kuban State University
Russian Federation

Alexan A. Khalafyan – Faculty of Chemistry and High Technologies

149, Stavropol’skaya ul., Krasnodar, 350040



N. M. Ageeva
North Caucasian Federal Research Center of Horticulture, Viticulture, Wine-making
Russian Federation

Natalia M. Ageeva

39, 40-letiya Pobedy гд., Krasnodar, 350072



References

1. Tariba B. Metals in Wine-Impact on Wine Quality and Health Outcomes / Biol. Trace Elem. Res. 2011. Vol. 144. N 1 – 3. P. 143 – 156. DOI: 10.1007/s12011-011-9052-7

2. Deng Z-H., Zhang A., Yang Z-W., et al. A Human Health Risk Assessment of Trace Elements Present in Chinese Wine / Molecules. 2019. Article 24:248. DOI: 10.3390/molecules24020248

3. Wu H., Lin G., Tian L., et al. Origin verification of French red wines using isotope and elemental analyses coupled with chemometrics / Food Chem. 2020. Article 127760. DOI: 10.1016/j.foodchem.2020.127760

4. Temerdashev Z. A., Khalafyan A. A., Kaunova A. A., et al. Using neural networks to identify the regional and varietal origin of Cabernet and Merlot dry red wines produced in Krasnodar region / Foods Raw Mater. 2019. Vol. 7. N 1. P. 124 – 130. DOI: 10.21603/2308-4057-2019-1-124-130

5. Bronzi B., Brilli C., Beone M., et al. Geographical identification of Chianti red wine based on ICP-MS element composition / Food Chem. 2020. Article 126248. DOI: 10.1016/j.foodchem.2020.126248

6. Urvieta R., Buscema F., Bottini R., et al. Phenolic and sensory profiles discriminate geographical indications for Malbec wines from different regions of Mendoza, Argentina / Food Chem. 2018. Vol. 265. P. 120 – 127. DOI: 10.1016/j.foodchem.2018.05.083

7. Kumar K., Schweiggert R., Patz C-D. Introducing a novel procedure for peak alignment in onedimensional 1H-NMR spectroscopy: A prerequisite for chemometric analyses of wine samples / Anal. Methods. 2020. Vol. 12. P. 3626 – 3636. DOI: 10.1039/D0AY01011A

8. Blotevogel S., Schreck E., Audry, S., et al. Contribution of soil elemental contents and Cu and Sr isotope ratios to the understanding of pedogenetic processes and mechanisms involved in the soil-to-grape transfer (Soave vineyard, Italy) / Geoderma. 2019. Vol. 343. P. 72 – 85. DOI: 10.1016/j.geoderma.2019.02.015

9. Blotevogel S., Schreck E., Laplanche C., et al. Soil chemistry and meteorological conditions influence the elemental profiles of West European wines / Food Chem. 2019. Vol. 298. Artile 125033. DOI: 10.1016/j.foodchem.2019.125033

10. Abakumov A. G., Titarenko V. O., Khalafyan A. A., et al. Grapes cultivar assignments using the identified elements-markers of grape berry and its different constituent parts / Analit. Kontrol’. 2019. Vol. 23. N 1. P. 61 – 70 [in Russian]. DOI: 10.15826/analitika.2019.23.1.002

11. Catarino S., Madeira M., Monteiro, F., et al. Effect of Bentonite Characteristics on the Elemental Composition of Wine / J. Agric. Food Chem. 2008. Vol. 56. N 1. P. 158 – 165. DOI: 10.1021/jf0720180

12. Mierczynska-Vasilev A., Wahono S. K., Smith, P. A., et al. Using Zeolites To Protein Stabilize White Wines / ACS Sustain. Chem. Eng. 2019. Vol. 7. N 14. P. 12240 – 12247. DOI: 10.1021/acssuschemeng.9b01583

13. Ubeda C., Lambert-Royo M. I., Cortiella M., et al. Chemical, Physical, and Sensory Effects of the Use of Bentonite at Different Stages of the Production of Traditional Sparkling Wines / Foods. 2021. Article 10(2): 390. DOI: 10.3390/foods10020390

14. Zhao H., Tang J., Yang Q. Effects of geographical origin, variety, harvest season, and their interactions on multi-elements in cereal, tuber, and legume crops for authenticity / J. Food Compos. Anal. 2021. Vol. 100. Article 103900. DOI: 10.1016/j.jfca.2021.103900

15. Foroni F., Vignando M., Aiello M., et al. The smell of terroir! Olfactory discrimination between wines of different grape variety and different terroir / Food Qual. Prefer. 2017. Vol. 58. P. 18 – 23. DOI: 10.1016/j.foodqual.2016.12.012

16. van Leeuwen C., Roby J. -P., de Rességuier L. Soil-related terroir factors: a review / OENO One. 2018. Vol. 52. N 2. P. 173 – 188. DOI: 10.20870/oeno-one.2018.52.2.2208

17. Maltman A. Minerality in wine: A geological perspective / J. Wine Res. 2013. Vol. 24. N 3. P. 169 – 181. DOI: 10.1080/09571264.2013.793176

18. Marschner P. Marschner’s Mineral Nutrition of Higher Plants. 3rd Ed. — London, UK: Elsevier, 2012. — 643 p.

19. Kaunova A. A., Titarenko V. O., Temerdashev Z. A., et al. Analysis of some approaches for assessing the quality, authenticity and regional origin of wine / Zavod. Lab. Diagn. Mater. 2016. Vol. 82. N 8. P. 69 – 74 [in Russian]. DOI: 10.15826/analitika.2016.20.2.004

20. Zioła-Frankowska A., Frankowski M. Determination of metals and metalloids in wine using inductively coupled plasma optical emission spectrometry and mini-torch / Food Anal. Methods. 2017. Vol. 10. P. 180 – 190. DOI: 10.1007/s12161-016-0567-6

21. Bertin C., Yang X., Weston L. A. The role of root exudates and allelochemicals in the rhizo-sphere / Plant Soil. 2003. Vol. 256. P. 67 – 83. DOI: 10.1023/A:1026290508166

22. Rao C. R. M., Sahuquillo A., Lopez Sanchez J. F. A Review of the different methods applied in environmental geo-chemistry for single and sequential extraction of trace elements in soils and related materials / Water Air Soil Pollut. 2008. Vol. 189. P. 291 – 333. DOI: 10.1007/s11270-007–9564-0

23. Hill T., Lewicki P. Statistics Methods and Applications. — Tulsa, OK: StatSoft, 2007. — 719 p.

24. Zinicovscaia I., Sturza R., Gurmeza I., et al. Metal bioaccumulation in the soil-leaf-fruit system determined by neutron activation analysis / J. Food Meas. Charact. 2018. Vol. 13. N 1. P. 592 – 601. DOI: 10.1007/s11694-018-9972-4

25. Amorós J. A., Pérez-de-los Reyes C., García Navarro F. J., et al. Bioaccumulation of mineral elements in grapevine varieties cultivated in «La Mancha» / J. Soil Sci. Plant Nutr. 2013. Vol. 176. N 6. P. 843 – 850. DOI: 10.1002/jpln.201300015

26. Redan B. W. Processing Aids in Food and Beverage Manufacturing: Potential Source of Elemental and Trace Metal Contaminants / J. Agric. Food Chem. 2020. Vol. 68. N 46. P. 13001 – 13007. DOI: 10.1021/acs.jafc.9b08066

27. Nicolini G., Larcher R., Pangrazzi P., Bontempo L. Changes in the contents of micro- and trace-elements in wine due to winemaking treatments / Vitis — J. Grapevine Res. 2004. Vol. 43. N 1. P. 41 – 45. DOI: 10.5073/vitis.2004.43.41–45

28. da Silva J., da Silva G., Parente D., et al. Biological diversity of carbon assimilation among isolates of the yeast Dekkera bruxellensis from wine and fuel-ethanol industrial processes / FEMS Yeast Res. 2019. Vol. 19. N 3. Article foz022. DOI: 10.1093/femsyr/foz022

29. Ren M., Liu S., Li R., et al. Clarifying effect of different fining agents on mulberry wine / Int. J. Food Sci. Technol. 2020. Vol. 55. N 4. P. 1578 – 1585. DOI: 10.1111/ijfs.14433


Review

For citations:


Temerdashev Z.A., Abakumov A.G., Khalafyan A.A., Ageeva N.M. Correlations between the elemental composition of grapes, soils of the viticultural area and wine. Industrial laboratory. Diagnostics of materials. 2021;87(11):11-18. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-11-11-18

Views: 613


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)