Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

On notch fracture mechanics

https://doi.org/10.26896/1028-6861-2021-87-2-56-64

Аннотация

Different stress distributions for an elastic behavior are presented as analytical expressions for an ideal crack, a sharp notch and a blunt notch. The elastic plastic distribution at a blunt notch tip is analyzed. The concept of the notch stress intensity factor is deduced from the definition of the effective stress and the effective distance. The impacts of the notch radius and constraint on the critical notch stress intensity factor are presented. The paper ends with the presentation of the crack driving force Jρ for a notch in the elastic case and the impact of the notch radius on the notch fracture toughness Jρ,c. The notch fracture toughness Jρ,c is a measure of the fracture resistance which increases linearly with the notch radius due to the plastic work in the notch plastic zone. If this notch plastic zone does not invade totally the ligament, the notch fracture toughness Jρ,c is constant. This occurs when the notch radius is less than a critical one and there is no need to use the cracked specimen to measure a lower bound of the fracture resistance.

Об авторе

G. Pluvinage
University of Lorraine
Франция
Technopole, 57070, Metz, France


Список литературы

1. Neuber H. Kerbspannungslehre. — Berlin: Springer, 1958 [in German].

2. Peterson R. E. Notch Sensitivity. Metal Fatigue / Edited by G. Sines and J. L. Waisman. — New York: MacGraw Hill, 1959.

3. Hardrath H. F., Ohman L. A study of elastic and plastic stress concentration factors due to notches and cracks on flat plates. NACA-Report 1117.1953.

4. Pluvinage G. Fracture and fatigue emanating from stress concentrators. — Editor Kluwer, 2003.

5. Feddersen C. E. Evaluation and prediction of residual strength of center cracked tension panels. ASTM STP 486.1970. P. 50.

6. Griffith A. A. / Phil Trans. Roy. Soc. London. A. 1920. Vol. 221. P. 163 – 198.

7. Irwin G. R. Analysis of stresses and strain near the end of a crack traversing a plate / J. Appl. Mech. 1948. Vol. 24. P. 361 – 364.

8. Williams M. L. Stress singularity resulting from various boundary conditions in angular corners of plates in extension / J. Appl. Mech. 1952. Vol. 19. N 4. P. 526 – 528.

9. Niu L. S, Chehimi C., Pluvinage G. Stress field near a large blunted V notch and application of the concept of critical notch stress intensity factor to the fracture of very brittle materials / Eng. Fract. Mech. 1994. Vol. 49. N 3. P. 325 – 335.

10. Lazzarin P., Tovo R. A notch intensity approach to the stress analysis of welds / Fatigue Fract. Eng. Mater. Struct. 1998. Vol. 21. P. 1089 – 1104.

11. Novozhilov V. V. On necessary and sufficient criterion of brittle strength / Appl. Math. Mech. (PMM). 1969. Vol. 33. P. 212 – 222.

12. Seweryn A. Brittle fracture criterion for structures with sharp notches / Eng. Fract. Mech. 1994. Vol. 47. N 4. P. 673 – 681.

13. Pluvinage G. Fracture and fatigue emanating from stress concentrators. — Kluwer Publisher, 2003. — 150 p.

14. Pluvinage G., Azari Z., Kadi N., Dlouhy I., Kozak V. Effect of ferritic microstructure on local damage zone distance associated with fracture near notch / Theor. Appl. Fract. Mech. 1999. Vol. 31. P. 149 – 156.

15. Qylafku G., Azari Z., Kadi N., Gjonaj M., Pluvinage G. Application of a new model proposal for fatigue life prediction on the notches and key-seats / Int. J. Fatigue. 1999. Vol. 21. P. 753 – 760.

16. Kadi N. PhD thesis, University of Metz, Metz-France. 2001.

17. Adib H., Pluvinage G., Le bienvenu M. Role of stress gradient at notch roots using volumetric method. ECF16. Alexandroupolis, 3 – 7 July 2006.

18. El Minor H., Louah M., Azari Z., Pluvinage G., Kifani A. Fracture toughness of high strength steel using the notch stress intensity factor and volumetric approach / Struct. Safety Elsevier Sci. 2003. Vol. 25. P. 35 – 45.

19. Pluvinage G., Capelle J., Hadj Méliani M. A review of fracture toughness transferability with constraint and stress gradient / Fatig. Fract. Eng. Mater. Struct. 2014. Vol. 37. Issue 11. November. P. 1165 – 1185.

20. Larsson S. G., Carlsson A. J. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials / J. Mech. Phys. Solids. 1973. Vol. 21. P. 263 – 277.

21. Rice J. R., Paris P. C., Merkle J. G. Some further results on J Integral analysis and estimates. 1973. ASTM — STP 536. P. 231 – 245.

22. Turner C. E. Methods for post yield fracture safety assessment. Post-yield fracture mechanics / Edited by D. G. H. Latzko. — London: Applied Science, 1979. P. 23 – 210.

23. Akourri O., Louah M., Kifani A., Gilgert J., Pluvinage G. The effect of notch radius on fracture toughness JIc / Eng. Fract. Mech. 2000. Vol. 65. P. 491 – 505.


Рецензия

Для цитирования:


Pluvinage G. On notch fracture mechanics. Заводская лаборатория. Диагностика материалов. 2021;87(2):56-64. https://doi.org/10.26896/1028-6861-2021-87-2-56-64

For citation:


Pluvinage G. On notch fracture mechanics. Industrial laboratory. Diagnostics of materials. 2021;87(2):56-64. https://doi.org/10.26896/1028-6861-2021-87-2-56-64

Просмотров: 454


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)