Авторизация
Логин:
Пароль:
Регистрация
Забыли свой пароль?

Изучение усталостной прочности ферромагнитных материалов неразрушающим экспресс-методом


DOI: 10.26896/1028-6861-2017-83-11-47-51

В. И. Колмыков, Д. Н. Романенко, С. П. Нефедьев, Р. Р. Дема, М. В. Харченко, Е. Ф. Романенко, В. Н. Кононов, Е. С. Замбржицкая, О. А. Никитенко; № 11 (83), 11.2017

Аннотация:

Представлены результаты усталостных испытаний стали 30 – 35 ХГС на лабораторной установке оригинальной конструкции, состоящей из усталостной машины, вихретокового датчика и электронного измерительного блока. Приведена структурная схема силового механизма изгиба образца при испытании. Для избежания биения образца выбран способ циклирования при постоянном напряжении. На основании предложенной теории разработан проходной вихретоковый преобразователь (датчик), который представляет собой цилиндрическую катушку из немагнитного материала с двумя обмотками. Представлены конструкция и эквивалентная схема обмоток датчика. Электронный блок измерительного комплекса состоит из низкочастотного генератора синусоидального тока Г-33, электронного счетчика оборотов двигателя, способного автоматически останавливать циклирование образца на заданном числе циклов, и анализатора гармоники С-4. Рассмотрен принцип работы установки. Полученные экспериментальные данные показали, что метод дает возможность в 30 – 40 раз сократить время испытаний, он удобен для определения действительного упрочняющего эффекта от различных видов обработки стали, поскольку позволяет определить предел выносливости до и после упрочнения. Вихретоковым методом можно измерять характеристики очень тонких поверхностных слоев, где, как известно, зарождаются усталостные трещины, поэтому он удобен при исследовании покрытий на сталях без разрушения в процессе испытания.

Ключевые слова: экспресс-метод; циклическое нагружение; магнитные свойства; усталостная прочность; сталь; неразрушающий вихретоковый метод.

Study of the Fatigue Strength of Ferromagnetic Materials by Rapid Non-Destructive Method

V. I. Kolmykov, D. N. Romanenko, S. P. Nefed’ev, R. R. Dema, M. V. Kharchenko, E. F. Romanenko, V. N. Kononov, E. S. Zambrzhitskaya, and O. A. Nikitenko

The results of fatigue tests of steel 30 – 35 CHG carried out on a laboratory unit of original design are presented. The unit consists of a fatigue machine, eddy current sensor and electronic measurement module. The structural scheme of the force mechanism of specimen bending upon testing is presented. To avoid runout of the sample we use cycling in conditions of steady stress. The developed eddy current transducer (sensor) consists of cylindrical coil made of a nonmagnetic material with two windings (design and equivalent circuit of the sensor windings are also presented). It is shown that electronic block of the measuring complex consists of a low-frequency generator of sinusoidal current, electronic engine revolution counter capable of automatically stopping of the sample cycling at a given number of cycles, and harmonic analyzer. The operation procedure is considered. The experimental data thus obtained proved that the method provides up to 30 – 40-fold shortening of the test time which is rather convenient for determination of the actual strengthening effect attributed to different types of steel processing, since the endurance limit can be determined both before and after strengthening. The eddy current method provides studying of rather thin surface layers, where fatigue cracks used to originate, thus being convenient for studying chemical heat treatment of steel surface and thin coatings without their destruction upon testing.

Keywords: express method; cyclic loading; magnetic properties; fatigue strength; steel; non-destructive eddy current method.

1. Shapovalova Yu. D., Emel’yanov S. G., Yakirevich D. I. Accelerated determination of the fatigue properties of steels by the vortex method. — Kursk: Kursk State Technical University, 2009. — 134 p. [in Russian].

2. Gadalov V. N., Romanenko D. N., Kolmykov D. V., Korenevskii N. A., Chernysheva E. V., Ziborova T. N. Low-temperature nitrocementation to improve the life of resurfaced tractor crankshafts / Russian Engineering Research. 2010. Vol. 30. Issue 11. P. 1090 – 1091.

3. Gadalov V. N., Romanenko D. N., Samoilov V. V., Nikolaenko A. V., Grigor’ev S. B. Procedure of evaluating the surface roughness of the electrospark coating after burnishing with mineral ceramics / Russian Journal of Non-Ferrous Metals. September 2012. Vol. 53. Issue 4. P. 348 – 350.

4. Kolmykov V. I., Romanenko D. N., Abyshev K. I., Nasteka V. V. Effect of structural characteristics on abrasive wear resistance and impact strength of facing and carbonitrided coatings / Chemical and Petroleum Engineering. January 2015. Vol. 50. Issue 9 – 10. P. 610 – 613.

5. Kolmykov V. I., Romanenko D. N., Abyshev K. I., Kolmykov D. V., Bedin V. V. Efficiency of surface hardening by carburizing steel objects operating under abrasive wear conditions / Chemical and Petroleum Engineering. May 2015. Vol. 51. Issue 1 – 2. P. 58 – 61.

6. Shcherenkova I. S., Shkatov V. V., Gadalov V. N., Romanenko D. N. Study of electrolytic chromium coatings with ultradisperse superhard fillers / Chemical and Petroleum Engineering. July 2015. Vol. 51. Issue 3. P. 277 – 282.

7. Nefed’ev S. P., Dema R. R., Kotenko D. A. Abrasive and shock-abrasive wear resistance of deposited hard coatings / Vestn. Yuzh.-Ural. Gos. Univ. Ser. Metallurgiya. 2015. Vol. 15. N 1. P. 103 – 106 [in Russian].

8. Nefedyev S. P., Vdovin K. N., Emelyushin A. N. Peculiarities of forming of the wear resistant cast iron coating structure on steel 45 upon plasma-powder surfacing / Materials Science Forum. 2016. Vol. 870. P. 141 – 148