Авторизация
Логин:
Пароль:
Регистрация
Забыли свой пароль?

Определение температуропроводности материала по трем точкам несимметричного температурного поля пластины


DOI: 10.26896/1028-6861-2017-83-11-35-40

А. К. Соколов; № 11 (83), 11.2017

Аннотация:

Предложены сравнительно простые формулы для расчета температуропроводности численно-аналитическим методом по несимметричному температурному полю T (x, τ) неограниченной пластины толщиной R, полученному в результате физического эксперимента. Решением обратной задачи теплопроводности значения температуропроводности рассчитывают для каждого временного интервала Δτi = τi – τi – 1 по температурам в трех точках пластины с координатами x = 0, z, R (0 < z < R) для моментов времени τi . Выполнена оценка трудоемкости и точности определения температуропроводности aт(T) по тестовому (исходному) температурному полю стальной пластины толщиной R = 0,07 м, рассчитанному методом конечных разностей с заданной aи(T) при граничных условиях 2-го и 3-го родов. Функцию aи(T) задавали ломаной линией, а величина aи в ходе численного эксперимента изменялась почти в три раза. Среднеквадратичное отклонение aт(T) от исходной зависимости aи(T) для всего диапазона времени составило 3 %. Наибольшие погрешности наблюдались после изменения знака производной daи(T)/dT. На линейном участке функции aи(T) погрешность определения температуропроводности не превышала 2 %. Метод сравнительно прост и нагляден, обработку данных несложно автоматизировать. Он не требует строгого соблюдения стандартных граничных условий: постоянства температуры среды, потока теплоты, адиабатных условий на одной из поверхностей пластины, что значительно упрощает организацию эксперимента и позволяет проводить его в реальных условиях эксплуатации материала.

Ключевые слова: определение температуропроводности; обратная задача теплопроводности; численно-аналитический метод; неограниченная пластина; сталь; несимметричное температурное поле.

Determination of the Thermal Diffusivity of a Material by Three Points of the Temperature Field of Asymmetric Plate Using Numerical-Analytical Method

A. K. Sokolov

Relatively simple formulas are derived for calculating the thermal diffusivity by a numerical-analytical method in the asymmetric temperature field T (x, τ) of an infinite plate of thickness R obtained as a result of a physical experiment. By solving the inverse heat conduction problem, the thermal diffusivity values are calculated for each time interval Δτi = τi – τi – 1 by the temperatures at three points of the plate with the coordinates x = 0, z, R (0 < z < R) for the time moments τi. We estimated the complexity and accuracy of the thermal diffusivity determination at(T) from the test (initial) temperature field of a steel plate (thickness R = 0.07 m) calculated by the method of finite differences with a given thermal diffusivity as(T) under boundary conditions of the second and third kind. The function at(T) is set by a broken line and the magnitude of ax varied almost threefold during numerical experiment. The root-mean-square deviation of at(T) from the initial dependence as(T) for the entire time range is 3%. The largest errors are observed after change in the sign of the derivative das(T)/dT. On the linear part of the function as(T), the error of at(T) determination did not exceed 2%. The method presented in the article does not require strict compliance with the standard boundary conditions: constant temperature of the ambient media, the same heat flow, adiabatic conditions on one of the plate surfaces, which simplifies the organization of the experiment to be carried out in real conditions of the material operation. The method is relatively simple and illustrative and data processing data processing can be easily programed using Microsoft Excel.

Keywords: determination of thermal diffusivity; inverse problem of heat conduction; numerical and analytical method; infinite plate; steel; asymmetrical temperature field.


1. Fokin V. M., Chernyshov V. N. Non-destructive testing of thermal performance of building materials. — Moscow: Mashinostroenie-1, 2004. — 212 p. [in Russian].

2. Zhukov N. P., Mainikova N. F. The multi-model methods and means of nondestructive testing of thermal properties of materials and products. — Moscow: Mashinostroenie-1, 2004. — 288 p. [in Russian].

3. Sokolov A. K. To solve the inverse heat conduction problem for the determination of thermal diffusivity materials numerically-analytical method / Zavod. Lab. Diagn. Mater. 2014. Vol. 80. N 11. P. 36 – 39 [in Russian].

4. Sokolov A. K., Yakubina O. A. Determination of thermal materials numerical-analytical method for small numbers of Fourier / Zavod. Lab. Diagn. Mater. 2016. Vol. 82. N 6. P. 27 – 39 [in Russian].

5. Sokolov A. K. Numerical-analytical method of calculation of asymmetrical heating plate considering scaling / Izv. Vuzov ÉO SNG. Énerget. 1994. N 5 – 6. P. 75 – 80 [in Russian].

6. Sokolov A. K. Economical mathematical model of the temperature field of a two-layer plate / Inzh.-Fiz. Zh. 1995. Vol. 68. N 2. P. 337 – 338 [in Russian].

7. Sokolov A. K., Popov G. V. Solution heat conduction problems numerically-analytical method of addition of temperature fields / Izv. RAN. Énerget. 2002. N 4. P. 118 – 130 [in Russian].

8. Sokolov A. K. Numerical-analytical method of calculation of the temperature field of infinite plate with small Fourier numbers / Izv. Vuzov. Cher. Metallurg. 2007. N 3. P. 23 – 28 [in Russian].

9. Sokolov A. K. Numerical-analytical method of calculation of temperature fields of multi-layer plates in the initial stage of the heating / Izv. RAN. Énerget. 2009. N 1. P. 138 – 151 [in Russian].

10. Sokolov A. K. Mathematical modeling of the heating of the metal in the gas ovens. — Ivanovo: Izd. Ivanovskii gosudarstvennyi énergeticheskii universitet imeni V. I. Lenina, 2011. — 396 p. [in Russian].