Авторизация
Логин:
Пароль:
Регистрация
Забыли свой пароль?

Анализ вторичного вольфрамсодержащего сырья для производства твердых сплавов методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой


DOI: 10.26896/1028-6861-2017-83-11-21-25

А. В. Вячеславов, В. Б. Бичаев, А. Д. Титова, Д. С. Рыбин, Т. Н. Ермолаева; № 11 (83), 11.2017

Аннотация:

Разработана методика определения Ti, V, Cr, Fe, Co, Ni, Cu, Zn и Ta во вторичном вольфрамсодержащем сырье для производства твердых металлокерамических сплавов методом АЭС ИСП, включающая предварительное микроволновое разложение проб в автоклаве. Обоснован состав реакционной смеси для перевода пробы в раствор и оптимизированы параметры микроволнового нагрева. Правильность определения элементов с помощью разработанной методики подтверждена методами варьирования навески и «введено – найдено». Результаты определения сопоставлены с полученными безэталонным методом рентгенфлуоресцентного анализа. Методика характеризуется хорошей воспроизводимостью и позволяет существенно сократить время анализа по сравнению со стандартными методиками.

Ключевые слова: вторичное вольфрамсодержащее сырье; металлокерамические твердые сплавы; микроволновая пробоподготовка; АЭС ИСП.

AES-ISP Analysis of Secondary Tungsten-Containing Raw Materials for Production of Hard Alloys

A. V. Vyacheslavov, V. B. Bichaev, A. D. Titova, D. S. Rybin, and T. N. Ermolaeva

A method for AES-ISP determination of Ti, V, Cr, Fe, Co, Ni, Cu, Zn, and Ta in recycled cemented tungsten carbide is developed including preliminary microwave sample decomposition in a steam pressure vessel (autoclave). We have specified composition of the reaction mixture for sample dissolution and optimized the parameters of microwave heating in the autoclave. Correctness of the results is proved by the method of sample weight variation and spike tests. The results of analysis are compared with the data obtained by standardless method of x-ray fluorescence spectrometry. The technique is characterized by good reproducibility and allows significant reduction of the analysis time due to combination of the multi-element method of AES-ISP and microwave sample preparation.

Keywords: secondary tungsten-containing raw; recycle cemented tungsten carbides; cemented tungsten carbide; microwave sample preparation; AES-ISP.

1. Panov V. S., Chuvilin A. M., Fal’kovskii V. A. Technology and properties of sintered hardmetalls and their products. — Moscow: MISIS, 2004. P. 7, 8, 14, 15 [in Russian].

2. Klyachko L. I., Leitman M. S. Tungsten. scrap. recycling technology and Russian market / Tsvet. Met. 2005. N 3. P. 101 – 104 [in Russian].

3. State Standard GOST 28817–90. Sintered hardmetalls. X-ray fluorescence method for determination of metalls. — Moscow: Izd-vo standartov, 1991. — 13 p. [in Russian].

4. State Standard GOST 25599.3–83. Sintered hardmetalls. Titanium determination method. — Moscow: Izd-vo standartov, 1984. — 6 p. [in Russian].

5. State Standard GOST 25599.4–83. Sintered hardmetalls. Cobalt determination method. — Moscow: Izd-vo standartov, 1984. — 6 p. [in Russian].

6. ISO 7627-1:1983. Hardmetals. Chemical analysis by flame atomic absorption spectrometry. Part 1. General requirements.

7. Doronina M. S., Karpov Yu. A., Baranovskaya V. B., Loleit S. I. Return metal-containing raw material: general characteristics and classification for certification purposes (summarizing article) / Zavod. Lab. Diagn. Mater. 2016. Vol. 82. N 6. P. 70 – 80 [in Russian].

8. Karpov Yu. A., Baranovskaya V. B., Loleit S. I., Belyaev V. N. Analytical monitoring of metal-containing recyclable materials / Tsvet. Met. 2015. N 12. P. 36 – 41 [in Russian].

9. Doronina M. S., Karpov Yu. A., Baranovskaya V. B. Current methods of sample preparation developed for metal-containing recoverable raw (review) / Zavod. Lab. Diagn. Mater. 2016. Vol. 82. N 3. P. 5 – 12 [in Russian].

10. Kubrakova I. V. Microwave radiation in analytical chemistry: the scope and prospects of application / Rus. Chem. Rev. 2002. Vol. 71. N 4. P. 283 – 294.

11. Karpov Yu. A., Savostin A. P. Metods of sampling and sample preparation. — Moscow: BINOM. Laboratoriya znanii, 2012. P. 123 – 126 [in Russian].

12. Bok R. Decomposition methods in analytical chemistry. — Moscow: Khimiya, 1984. — 402 p. [Russian translation].

13. Piippanen T., Jaayinen J., Tummavuori J. The analysis of chromium, cobalt, iron, nickel, niobium, tantalum, titanium and zinc in cemented tungsten carbides with cobalt as a binder by inductively coupled plasma atomic emission spectrometry / Fresenius J. Anal. Chem. 1997. Vol. 357. P. 405 – 410.

14. Archer M., McCrindle R. I., Rohwer E. R. Analysis of cobalt, tantalum, titanium, vanadium, and chromium in tungsten carbides by inductively coupled plasma — optical emission spectrometry / J. Anal. At. Spectrom. 2003. Vol. 18. N 12. P. 1493 – 1496.

15. Zaidel’ A. N., Prokof’ev V. K., Raiskii S. M., et al. Tables of spectral lines. — Moscow: Nauka, 1977. — 800 p. [in Russian].

16. Mosichev V. I., Nikolaev G. I., Kalinin B. D. Metals and alloys: Investigation and analysis. Atomic emission, atomic absorbtion and X-ray fluorescence analysis. — St. Petersburg: NPO «Professional», 2006, 2007. P. 622 – 630 [in Russian].

17. Method of fundamental parameters. Software for qualitative and quantitative analysis by this method. — St. Petersburg: NPO «Spektron», 2003. — 468 p. [in Russian].