Авторизация
Логин:
Пароль:
Регистрация
Забыли свой пароль?

Определение гранулометрического состава порошков алюмоиттриевого граната методом лазерной дифракции


П. В. Карпюк, Д. Е. Кузнецова, К. Б. Богатов, Г. А. Досовицкий; № 9 (83), 09.2017

Аннотация:

Представлены методология и результаты исследования гранулометрического состава наноструктурированного порошка алюмоиттриевого граната, активированного церием, методом лазерной дифракции, основанным на различии в характере рассеивания лазерного излучения на частицах разного размера. Измерения проводили в токе дисперсионной среды, поэтому из-за агрегации частиц порошка получаемые размеры были завышены. Опробовали различные дисперсионные среды (вода, этанол, изопропанол) и добавки (соли Na и ПАВ) для снижения степени агрегации. По сравнению со стандартной системой вода — измеряемая проба большинство модифицированных тем или иным способом сред показывали снижение агломерации в процессе измерений. Наиболее стабильные результаты получили в случае изопропанола и воды с добавлением фосфатов Na, эффективно препятствующих процессу агрегации. Таким образом установлено, что лучшая среда при определении гранулометрического состава — вода с добавлением ортофосфата Na. В такой среде коллоидная система достаточно стабилизирована, а компоненты просты и общедоступны.

 

Ключевые слова: алюмоиттриевый гранат; гранулометрический состав; лазерная дифракция; наноструктурированный порошок.

Determination of the YAG Powder Particle Size Distribution by Laser Diffraction Method

P. V. Karpyuk, D. E. Kuznetsova, K. B. Bogatov, and G. A. Dosovitskii

We present a methodology of studying particle size distribution of Ce-doped YAG (yttrium aluminum garnet) powders by laser diffraction method based on the difference in the character of laser beam scattering by the particles of different size. Since the measurements are taken in a flow of dispersion medium, powder aggregation probably occurred during measurement procedure can result in overvaluation of the particle size in the distribution thus obtained. Different dispersion media (water, ethanol, isopropanol) and additives (Na salts and commercial surfactants) are used to lower powder aggregation. Most of the modified systems demonstrate reduced agglomeration of the particles during measurement procedure compared to standard «water – powder» dispersion system. The best and most stable results are obtained in isopropanol or water added with phosphate-based electrolyte which effectively prevent aggregation. Addition of surfactants appeared ineffective with regard to the stability of the results. Water with addition of sodium orthophosphate is proposed as the most convenient medium, in which dispersion is stable and all the components are readily available.

Keywords: yttrium aluminum garnet (YAG); particle size distribution; laser diffraction; nanostructured powder.

1. Bakunov V. S., Belyakov A. V. Ceramic technology as a process of accumulation and dissipation of energy / Konstr. Kompozits. Mater. 2005. N 2. P. 5 – 18 [in Russian].

2. Merac M. R., Kleebe H. J., Müller M. M., Reimanis I. E. Fifty Years of Research and Development Coming to Fruition; Unraveling the Complex Interactions during Processing of Transparent Magnesium Aluminate (MgAl2O4) Spinel / J. Am. Ceram. Soc. 2013. N 96(11). P. 3341 – 3365.

3. Ikesue A., Aung Y. Ceramic laser materials / Nat. Photonics. 2008. N 2. P. 721 – 727.

4. Lupei V., Lupei A. Nd:YAG at its 50th anniversary: Still to learn / J. Luminesc. 2016. Vol. 169. Part B. P. 426 – 439.

5. Zych E., Brecher C., Wojtowicz A., Lingertat H. Luminescence properties of Ce-activated YAG optical ceramic scintillator materials / J. Luminesc. 1997. N 75. P. 193 – 203.

6. Mihokova E., Nikl M., Mares J., Beitlerova A., Vedda A., Nejezchleb K., Blazek K., D’Ambrosio C. Luminescence and scintillation properties of YAG: Ce single crystal and optical ceramics / J. Luminesc. 2007. N 126. P. 77 – 80.

7. Nishiura S., Tanabe S., Fujioka K., Fujimoto Y. Properties of transparent Ce: YAG ceramic phosphors for white LED / Optical Mater. 2011. N 33. P. 688 – 691.

8. Raukas M., Kelso J., Zheng Y., Bergenek K., Eisert D., Linkov A., Jermann F. Ceramic Phosphors for Light Conversion in LEDs / ECS J. Solid State Sci. Technol. 2013. Vol. 2. Issue 2. P. R3168 – R3176.

9. Kuntz J., Roberts J., Hough M., Cherepy N. Multiple synthesis routes to transparent ceramic lutetium aluminum garnet / Scripta Mater. 2007. N 57(10). P. 960 – 963.

10. Nikl M., Mares J., Solovieva N., Li H., Liu X., Huang L., D’Ambrosio C. Scintillation characteristics of Lu3Al5O12: Ce optical ceramics / J. Appl. Phys. 2007. N 101(3). P. 033515-1 – 033515-5.

11. Chen C., Zhou S., Lin H., Yi Q. Fabrication and performance optimization of the magneto-optical (Tb1 – xRx)3Al5O12 (R = Y, Ce) transparent ceramics / Appl. Phys. Lett. 2012. Vol. 101. N 13. P. 131908-1 – 131908-4.

12. Seeley Z. M., Cherepy N. J., Payne S. A. Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy / J. Crystal Growth. 2013. N 379. P. 79 – 83.

13. Seeley Z. M., Cherepy N. J., Payne S. A. Expanded phase stability of Gd-based garnet transparent ceramic scintillators / J. Mater. Res. 2014. N 29(19). P. 2332 – 2337.

14. Vorob’eva V. N., Astaf’ev G. V. Methods of research of petroleum, petroleum products, additives, catalysts and adsorbents. — Moscow: Khimiya, 1967. — 430 p. [in Russian].

15. Romankov P. G., Kurochkina M. I. Extraction from solid materials. — Moscow: Khimiya, 1983. — 256 p. [in Russian].

16. Domkin K. I., Trusov V. A., Nedorezov V. G. Optical methods of particle size determination of high-dispersed materials / Proc. Int. Symp. «Reliability and quality». Vol. 2. — Penza, 2011. P. 154 – 158 [in Russian].

17. Timoshchuk E. I., Samoilov V. M., Timoshchuk E. V., Smirnov V. K. Application of laser diffraction to determination of the particle size in fillers and Molding powders in fine-grained graphite prodaction / Zavod. Lab. Diagn. Mater. 2010. Vol. 76. N 5. P. 26 – 29 [in Russian].

18. Pimenova N. V., Permin D. A. Study of the grain size distribution in ultra-fine Y2O3 powders / Zavod. Lab. Diagn. Mater. 2012. Vol. 78. N 5. P. 41 – 46 [in Russian].

19. Éstemirova S. Kh., Pechishcheva N. V., Kozhina G. A. Determination the particle size of ultra-fine powders of manganite solid solutions (Nd, Gd)xCa1 – xMnO3 by photon correlation spectroscopy / Zavod. Lab. Diagn. Mater. 2015. Vol. 81. N 12. P. 26 – 31 [in Russian].

20. Sokol’skii G. V., Makarenkov D. A., Ryzhov A. V., Lobastov S. L. Research of the dispersion process of multicomponent pigment pastes in aqueous medium / Khim. Promyshl. Segodnya. 2013. N 12. P. 38 – 43 [in Russian].

21. Sigmund W., Bell N., Bergstro L. Novel Powder-Processing Methods for Advanced Ceramics / J. Am. Ceram. Soc. 2000. N 83(7). P. 1557 – 1574.

22. Lewis J. A. Colloidal Processing of Ceramics / J. Am. Ceram. Soc. 2000. N 83(10). P. 2341 – 2359.

23. Shqau K., Akbar S., Verweij H., Dutta P. Electrosteric dispersants used in colloidal processing of ceramics / Ohio State University. CISM. Literature Review. 2005. P. 1 – 17.

24. Liang Y., Hilal N., Langston P., Starov V. Interaction forces between colloidal particles in liquid: Theory and experiment / Adv. Colloid Interface Sci. 2007. Vol. 134 – 135. N 31. P. 151 – 166.

25. State Standard GOST 25659–83. Posphor for fluorescent lamp of white chromaticity. — Moscow: Izd. Ministerstvo khimicheskoi promyshlennosti, 1983. — 15 p. [in Russian].

26. Timoshchuk E. I., Samoilov V. M., Lyapunov A. Ya., Balaklienko Yu. M., Borunova A. B. Determination of the particle size of the powders of the artificial graphite by laser diffraction / Zavod. Lab. Diagn. Mater. 2012. Vol. 78. N 11. P. 25 – 28 [in Russian].

27. Lv Y., Liu H., Sang Y., Liu S., Chen T., Qin H., Wang J. Electrokinetic properties of Nd:YAG nanopowder and a high concentration slurry with ammonium poly (acrylic acid) as dispersant / J. Mater. Sci. 2010. Vol. 45. N 3. P. 706 – 712.

28. Gorelova A. V., Kolomichenko N. S., Man’shina A. A., Mikhailov M. D., Semencha A. V. Stabilization of nanoparticles in colloid systems / Sovr. Probl. Nauki Obrazov. 2013. N 3. [on-line]. http://www.science-education.ru/ru/article/view?id=9294 (accessed 29.05.17) [in Russian].

29. Dosovitskii G. A., Kuznetsova D. E., Volkov P. A., Napol’skii K. S., Roslyakov I. V., Velikodnyi Yu. A., Mudretsova S. N., Bogatov K. B., Mikhlin A. L., Dosovitskii A. E. Nanostructured powder of Y3Al5O12:Ce manufactured by co-presipitaion / Naukoem. Tekhnol. 2013. Vol. 14. N 3. P. 48 – 52 [in Russian].

30. Frolov Yu. G. Course of colloid chemistry Surface phenomena and dispersive systems. — Moscow: Khimiya, 1989. — 464 p. [in Russian].

31. Vasil’ev V. A., Karalin É. A., Abramov A. G. Na-ion assorption on the surface of alumino-oxide catalyst of 1-phenylethanol dehydration / Vestn. Kazan. Tekhnol. Univ. 2011. N 13. P. 73 – 76 [in Russian].

32. Huo D., Zheng Y., Sun X., Li X., Liu S. Preparation of transparent Y2O3 ceramic by slip casting and vacuum sintering / J. Rare Earths. 2012. Vol. 30. N 1. P. 57 – 62.

33. Marchenko R. T. Physical and Colloid chemistry. — Moscow: Vysshaya shkola, 1965. — 374 p. [in Russian].

.